Search results for "Affine transformation"

showing 10 items of 99 documents

Hybrid State Feedback Position-Force Control of Hydraulic Cylinder

2019

A hybrid position-force control is proposed using a unified state feedback controller in combination with feedforward dead-zone compensation. Dead-zone compensator was constructed as inverse of the identified static map while the state feedback gains were obtained using a numerical optimization routine. An accurate state-space model affine in states and control, derived in a previous work, was used for closed-loop simulations and control tuning. A trigger event for automatic switching between position and force control was defined and integrated into overall control architecture alongside with a feedforward low-pass filter reducing high frequency components in the control signal. Experiment…

0303 health sciencesComputer science020208 electrical & electronic engineeringWork (physics)Feed forward02 engineering and technologyFilter (signal processing)03 medical and health sciencesHydraulic cylinderPosition (vector)Control theoryFull state feedback0202 electrical engineering electronic engineering information engineeringTrajectoryAffine transformation030304 developmental biology2019 IEEE International Conference on Mechatronics (ICM)
researchProduct

The coordinatization of affine planes by rings

1996

With every unitary free module of rank 2 there is naturally associated a generalized affine plane (e.g. the lines are just the cosets of all nonzero 1-generated submodules). Here we solve the converse problem by coordinatizing a given generalized affine plane which satisfies certain versions of Desargues' postulate.

Affine geometryAffine coordinate systemCombinatoricsAffine geometry of curvesAffine representationAffine hullAffine groupGeometry and TopologyAffine transformationAffine planeMathematicsGeometriae Dedicata
researchProduct

On the algebraic representation of projectively embeddable affine geometries

1995

The main result of this article is an application of [1] and [2] which yields that an at least 2-dimensional affine geometry is module-induced if and only if it is projectively embeddable into an Arguesian projective lattice geometry.

Affine geometryDiscrete mathematicsAffine geometry of curvesAlgebra representationGeometry and TopologyAffine transformationLattice (discrete subgroup)Affine planeMathematicsJournal of Geometry
researchProduct

Additivity of affine designs

2020

We show that any affine block design $$\mathcal{D}=(\mathcal{P},\mathcal{B})$$ is a subset of a suitable commutative group $${\mathfrak {G}}_\mathcal{D},$$ with the property that a k-subset of $$\mathcal{P}$$ is a block of $$\mathcal{D}$$ if and only if its k elements sum up to zero. As a consequence, the group of automorphisms of any affine design $$\mathcal{D}$$ is the group of automorphisms of $${\mathfrak {G}}_\mathcal{D}$$ that leave $$\mathcal P$$ invariant. Whenever k is a prime p,  $${\mathfrak {G}}_\mathcal{D}$$ is an elementary abelian p-group.

Algebra and Number Theory010102 general mathematics0102 computer and information sciencesAutomorphism01 natural sciencesCombinatoricsKeywords Affine block designs · Hadamard designs · Additive designs · Mathieu group M11010201 computation theory & mathematicsSettore MAT/05 - Analisi MatematicaAdditive functionDiscrete Mathematics and CombinatoricsAffine transformationSettore MAT/03 - Geometria0101 mathematicsInvariant (mathematics)Abelian groupMathematics
researchProduct

Quasi-Projective Varieties

2000

We have developed the theory of affine and projective varieties separately. We now introduce the concept of a quasi-projective variety, a term that encompasses both cases. More than just a convenience, the notion of a quasi-projective variety will eventually allow us to think of an algebraic variety as an intrinsically defined geometric object, free from any particular embedding in affine or projective space.

AlgebraComputer scienceAffine spaceEmbeddingProjective spaceAlgebraic varietyAffine transformationVariety (universal algebra)Projective testProjective variety
researchProduct

Ein Axiomensystem f�r partielle affine R�ume

1994

A partial linear space with parallelism is called partial affine space if it is embeddable in an affine space with the same pointset preserving the parallelism. These partial affine spaces will be characterized by a system of three axioms for partial linear spaces with parallelism.

AlgebraParallelism (rhetoric)Linear spaceAffine spaceGeometry and TopologyAffine transformationComputer Science::Computational GeometryAxiomMathematicsJournal of Geometry
researchProduct

Kollineationen und Schliessungssätze für Ebene Faserungen

1979

Every affine central collineation of a translation plane π induces a special collineation of the projective space π spanned by the spreadF belonging to π. Here the relations between these special collineations of π and certain incidence propositions inF are investigated; so new proofs are given for some characterisations of (A,B)-regular spreads included in [7].

AlgebraPure mathematicsCollineationTranslation planeProjective spaceGeometry and TopologyAffine transformationMathematical proofIncidence (geometry)MathematicsJournal of Geometry
researchProduct

Automorphism Groups of Certain Rational Hypersurfaces in Complex Four-Space

2014

The Russell cubic is a smooth contractible affine complex threefold which is not isomorphic to affine three-space. In previous articles, we discussed the structure of the automorphism group of this variety. Here we review some consequences of this structure and generalize some results to other hypersurfaces which arise as deformations of Koras–Russell threefolds.

Automorphism groupPure mathematics010102 general mathematicsStructure (category theory)Space (mathematics)Automorphism01 natural sciencesContractible spaceAlgebraMathematics::Algebraic GeometryAffine representation0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010307 mathematical physicsAffine transformation0101 mathematicsVariety (universal algebra)Mathematics
researchProduct

Overlapping self-affine sets of Kakeya type

2009

We compute the Minkowski dimension for a family of self-affine sets on the plane. Our result holds for every (rather than generic) set in the class. Moreover, we exhibit explicit open subsets of this class where we allow overlapping, and do not impose any conditions on the norms of the linear maps. The family under consideration was inspired by the theory of Kakeya sets.

Class (set theory)Applied MathematicsGeneral Mathematics010102 general mathematicsMinkowski–Bouligand dimensionDynamical Systems (math.DS)Type (model theory)16. Peace & justice01 natural sciencesCombinatoricsSet (abstract data type)Mathematics - Classical Analysis and ODEs0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: Mathematics28A80 37C45010307 mathematical physicsAffine transformationMathematics - Dynamical Systems0101 mathematicsMathematicsErgodic Theory and Dynamical Systems
researchProduct

Rigidity of quasisymmetric mappings on self-affine carpets

2016

We show that the class of quasisymmetric maps between horizontal self-affine carpets is rigid. Such maps can only exist when the dimensions of the carpets coincide, and in this case, the quasisymmetric maps are quasi-Lipschitz. We also show that horizontal self-affine carpets are minimal for the conformal Assouad dimension.

Class (set theory)Pure mathematicsMathematics::Dynamical SystemsGeneral Mathematicsquasisymmetric mapsMathematics::General TopologyPhysics::OpticsConformal mapRigidity (psychology)01 natural sciencesDimension (vector space)0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsMathematics::Metric Geometry0101 mathematicsself-affine carpetsMathematicsta111010102 general mathematicsPhysics::Classical PhysicsMathematics - Classical Analysis and ODEs010307 mathematical physicsAffine transformation28A80 37F35 30C62 30L10
researchProduct